

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Carbon-13 NMR Studies of Nitrogen Compounds. II.-¹³C NMR Chemical Shifts of N-Substituted Formamides in Neutral and Acidic Solvents

J. Llinares^a; R. Faure^a; E. J. Vincent^a; J. Elguero^b

^a Laboratoire de Chimie Organique Physique, Université d'Aix-Marseille III, Marseille Cédex 4, France

^b Instituto de Química Médica, Madrid, Spain

To cite this Article Llinares, J. , Faure, R. , Vincent, E. J. and Elguero, J.(1981) 'Carbon-13 NMR Studies of Nitrogen Compounds. II.-¹³C NMR Chemical Shifts of N-Substituted Formamides in Neutral and Acidic Solvents', *Spectroscopy Letters*, 14: 6, 423 — 430

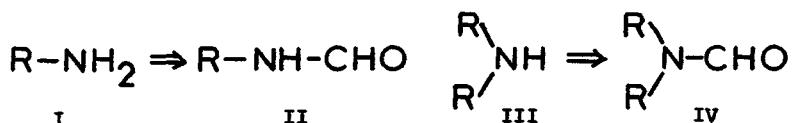
To link to this Article: DOI: 10.1080/00387018108062602

URL: <http://dx.doi.org/10.1080/00387018108062602>

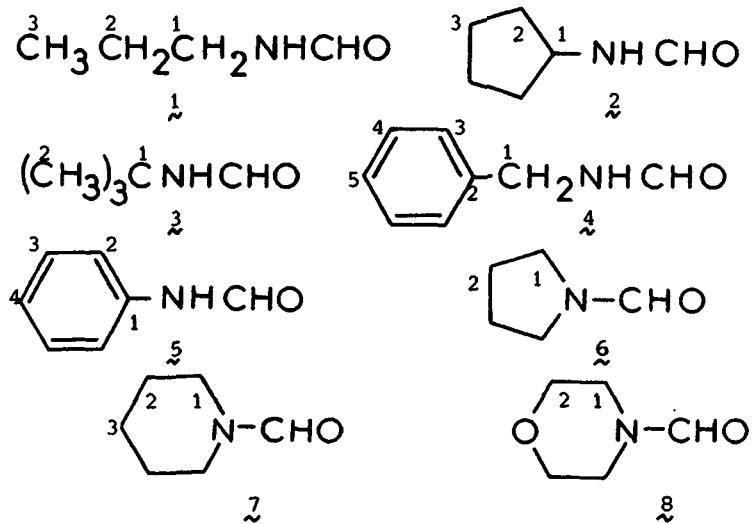
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.


The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CARBON-13 NMR STUDIES OF NITROGEN COMPOUNDS. II.- ^{13}C NMR CHEMICAL SHIFTS OF N-SUBSTITUTED FORMAMIDES IN NEUTRAL AND ACIDIC SOLVENTS


^{13}C NMR, N-Substituted Formamides, SCS of the formamido group,
Protonation

J. Llinares, R. Faure and E.J. Vincent,
Laboratoire de Chimie Organique Physique, Université d'Aix-Marseille
III, Rue H. Poincaré, 13397 Marseille Cédex 4, France
J. Elguero,
Instituto de Química Médica, Juan de la Cierva 3, Madrid-6, Spain

With the purpose to determine the structure of N-formyl pyrazolines¹ and their salts, we have undertaken a preliminary study of the effect produced by the replacement of an amino group by a formamido group on the carbon chemical shifts of the substituent R, both in a neutral solvent (hexadeuteriodimethylsulphoxide) and in an acidic solvent (trifluoroacetic acid).

The following N-substituted and N,N-disubstituted Formamides have been studied :

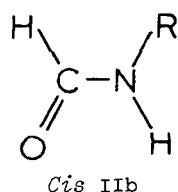
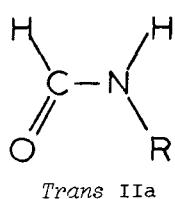
EXPERIMENTAL.

The ^{13}C NMR spectra were recorded at 20.0 MHz in the FT-mode on a Varian FT-80 spectrometer (spectral width = 5000 Hz; acquisition time = 0.8 s; pulse width = 8 μs). The compounds were studied at 28 ± 2 $^{\circ}\text{C}$. In DMSO-d_6 solutions, the chemical shifts were measured, in the noise decoupled mode, with respect to the central line of the solvent and referred to the TMS signal by the relationship $\delta_{\text{TMS}} = \delta_{\text{DMSO}} + 39.6$ (δ in ppm)². In the case of trifluoroacetic acid solutions, field frequency control was effected by means of the deuterium resonance of DMSO-d_6 placed in an internal capillary tube; chemical shifts were determined with respect to TMS as an internal standard. The accuracy of the chemical shifts is better than 0.1 ppm.

Most of the samples used in this study were prepared by known methods^{3,4}; the synthesis of the other compounds has been described elsewhere⁵.

RESULTS AND DISCUSSION.

The chemical shifts in DMSO-d_6 are listed in table 1, those in trifluoroacetic acid in table 2. In open-chain N-monosubstituted formamides the *trans* (Z) conformation IIa is strongly preferred over the *cis* (E) conformation IIb, as has been shown by various analytical methods⁶.



TABLE 1

¹³C Chemical shifts of formamides in DMSO-d₆ from internal TMS

N ^o	Isomer	% ^a	C-1	C-2	C-3	C-4	C-5	CHO
1	Trans	85	39.1	22.5	11.3			161.1
	Cis	15	42.9	24.3	10.8			164.7
2	Trans	88	49.1	32.4	23.5			160.45
	Cis	12	53.0	33.5	23.5			163.75
3	Trans	76	50.0	28.6				160.6
	Cis	24	49.5	30.5				162.7
4	Trans	90	40.9	138.95	127.4	128.4	127.0	161.1
	Cis	10	44.7	b	c	c	c	165.0
5	Trans	73	138.6	119.9	129.25	124.2		160.1
	Cis	27	138.6	118.3	129.8	124.2		163.0
6 ^d	Trans	--	42.4	23.6				160.3
	Cis	--	45.15	24.4				
7 ^d	Trans	--	39.6	24.8	24.2			160.4
	Cis	--	45.7	26.2				
8 ^d	Trans	--	40.0	65.9				161.1
	Cis	--	45.2	66.85				

^a See text for the determination of these values; ^b This signal is not observed; ^c Signal overlapped by the peaks of *trans* isomer;

^d *Cis* and *trans* correspond to *cis* and *trans* carbons.

Assignments of chemical shifts of transoid and cisoid groups is based on the literature data⁷ and on the intensity of resonance signals. In the case of cyclic formamides, ⁶ to ⁸, our assignment

TABLE 2
¹³C Chemical shifts of formamides in TFAA from internal TMS

N ^o	Isomer	% ^a	C-1	C-2	C-3	C-4	C-5	CHO
1	Trans	88	41.75	22.8	11.4			165.3
~	Cis	12	45.7	24.4	10.9			168.1
2	Trans	85	54.45	33.2	24.4			165.9
~	Cis	15	58.3	34.1	24.6			168.1
3	Trans	58	53.5	29.5				165.0
~	Cis	42	53.5	30.3				166.4
4	Trans	80	46.4	135.2	130.8	129.5	130.5	167.0
~	Cis	20	50.0	b	c	c	c	169.85
5	Trans	53	136.25	122.5	130.1	127.4		163.9
~	Cis	47	b	120.35	130.7	127.7		163.9
6 ^d	Trans	--	45.2	24.7				163.8
~	Cis		48.3	25.4				
7 ^d	Trans	--	43.8	25.75	24.5			163.9
~	Cis		50.4	27.0				
8 ^d	Trans	--	42.6	67.0				164.8
~	Cis		48.1	67.9				

^aSee text for the determination of these values; ^bThese signals are not observed; ^cSignals overlapped by the peaks of *trans* isomer; ^d*Cis* and *trans* correspond to *cis* and *trans* carbons.

is coherent with the reported⁸ chemical shifts of N,N-dialkyl-formamides.

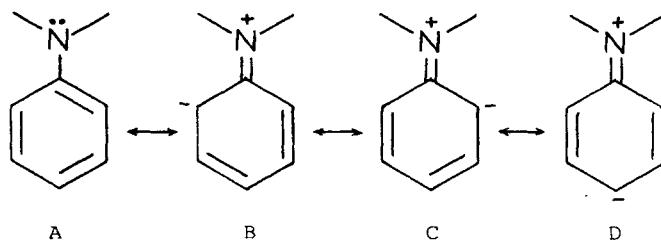
The relative amounts of *cis* and *trans* isomers were determined from the integrated peak intensities of selected carbons. Depending on the conformation, the mechanism of spin-lattice relaxation of the α -carbons, C₁, is different⁹; thus, this carbon has not been used in the evaluation of "conformer" ratio, except for compound 4_~ since for this formamide the chemical shifts of the other carbons are not available for the *cis* form (see tables 1 and 2).

The increasing proportion of the *cis* form with the increasing bulk of R-group agree with the results of a proton NMR study¹⁰. Moreover, the reduced percentage of *trans* isomer in N-t-butyl formamide [~]3 in acidic medium is consistent with the results of Laplanche and Rogers¹¹.

SUBSTITUENT EFFECTS DUE TO FORMAMIDO GROUP.

Substituent effects which arise from the replacement of amino protons by a formyl group are gathered in table 3.

In general, shieldings of carbons α and β to the nitrogen atom are observed, like those produced by the acetamido group¹². Moreover α carbons *syn* to the carbonyl oxygen are more shielded than


TABLE 3
Substituent chemical shifts due to N-formylation^a

N ⁰	Isomer	C-1	C-2	C-3	C-4	C-5
1	<i>Trans</i>	-4.65	-4.1	0.2		
~	<i>Cis</i>	-0.85	-2.3	-0.3		
2	<i>Trans</i>	-3.7	-3.4	0.1		
~	<i>Cis</i>	0.2	-2.3	0.1		
3	<i>Trans</i>	3.35	-3.7			
~	<i>Cis</i>	2.85	-1.8			
4	<i>Trans</i>	-5.0	-5.35	0.3	0.3	0.8
~	<i>Cis</i>	-1.2	--	--	--	--
5	<i>Trans</i>	-9.9	5.6	0.2	7.9	
~	<i>Cis</i>	-9.9	4.0	0.75	7.9	
6	<i>Trans</i>	-4.2	-1.7			
~	<i>Cis</i>	-1.45	-0.9			
7	<i>Trans</i>	-7.4	-2.0	-0.9		
~	<i>Cis</i>	-1.3	-0.8			
8	<i>Trans</i>	-6.3	-1.6			
~	<i>Cis</i>	-1.1	-0.65			

^a $\Delta\delta = \delta_{\text{Formamide}} - \delta_{\text{Amine}}$; amines chemical shifts¹².

the *anti* ones. This fact has been attributed to the two following reasons: electric-field associated with the carbon-oxygen bond¹³ and, more recently, steric compression⁹. Whatever the origin of this effect, its magnitude and direction are depending on the steric hindrance around the nitrogen atom; thus for N , the β effect is deshielding ($+ 5$ ppm). We explain this result by strong steric interactions leading either to a distortion of the nitrogen bond angles or to the predominance of energetically more stable non-planar rotamers.

For compound N , the *ortho* and *para* carbons are more deshielded than in aniline. It can be assumed that the canonical structures B, C and D are disfavoured by the formyl group on the nitrogen, thus the non-conjugative interactions (inductive effects) became the most important; these conclusions agree with the values of σ_R and σ_I for the amino and the formamido groups¹⁴.

EFFECTS DUE TO THE PROTONATION.

In trifluoroacetic acid there is an equilibrium between the neutral molecule and the protonated species (O- and N-protonation). The displacements of ^{13}C chemical shifts due to protonation are shown in table 4: all the signals are deshielded save those of *ipso* aromatic carbons in compounds 4 and 5 . Furthermore, carbonyl shift in the *trans* isomer is more deshielded relative to the *cis* form.

The comparison between these values and those obtained from the protonation of amines¹² suggest the predominance of the O-protonation in formamides, a result in agreement with other observations¹⁵.

TABLE 4

Changes in chemical shifts in formamides due to the "protonation"^a

N ^o	Isomer	C-1	C-2	C-3	C-4	C-5	CHO
1	Trans	2.65	0.3	0.1			4.2
	Cis	2.8	0.1	0.1			3.4
2	Trans	5.35	0.8	0.9			5.45
	Cis	5.3	0.6	1.1			4.35
3	Trans	3.5	0.9				4.4
	Cis	4.0	-0.2				3.7
4	Trans	5.5	-3.75	3.4	1.1	3.5	5.9
	Cis	5.3	---	---	---	---	4.85
5	Trans	-2.35	2.6	0.85	3.2		3.8
	Cis	---	2.05	0.9	3.5		3.6
6	Trans	2.8	1.1				3.5
	Cis	3.15	1.0				
7	Trans	4.2	0.95	0.3			
	Cis	4.7	0.8				
8	Trans	2.6	1.1				
	Cis	2.9	1.05				

$$^a \Delta\delta = \delta_{\text{TFAA}} - \delta_{\text{DMSO-d}_6}$$

REFERENCES

- 1.- J. Elguero, E. Gonzalez and R. Jacquier, *Bull. Soc. Chim. Fr.*, 2054 (1969); J. Elguero and C. Marzin, *Bull. Soc. Chim. Fr.*, 3466 (1970).
- 2.- G.C. Levy and G.L. Nelson, ¹³C NMR for Organic Chemists, Wiley-Interscience, New York, 1972.
- 3.- *Organic Synthesis*, 41, 14 (1961).
- 4.- J. Moffat, M.V. Newton and G.J. Papenmeier, *J. Org. Chem.*, 27, 4058 (1962).
- 5.- J. Llinares, Thesis, Marseille, 1980.
- 6.- W.E. Stewart and T.H. Siddall, *Chem. Rev.*, 70, 517 (1970).
- 7.- D.E. Dorman and F.A. Bovey, *J. Org. Chem.*, 38, 1719 (1973); C. Nagata, E. Miyata, T. Horikiri and S. Tanaka, *Spectroscopic Letters*, 12, 287 (1979).

- 8.- H. Fritz, P. Hug, H. Sauter, T. Winkler and E. Logemann, *Org. Magn. Reson.*, 9, 108 (1977).
- 9.- G.C. Levy and G.L. Nelson, *J. Amer. Chem. Soc.*, 94, 4897 (1972).
- 10.- M. Liler, *J. Chem. Soc. Perkin Trans. 2*, 720 (1972).
- 11.- L.A. Laplanche and M.T. Rogers, *J. Amer. Chem. Soc.*, 86, 337 (1964).
- 12.- J. Llinares, J. Elguero, R. Faure and E.J. Vincent, *Org. Magn. Res.*, 14, 20 (1980).
- 13.- W. McFarlane, *Chem. Commun.*, 418 (1970).
- 14.- C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani and E.J. Lien, *J. Med. Chem.*, 16, 1207 (1973).
- 15.- R.A. McLlelland and W.F. Reynolds, *Chem. Commun.*, 824 (1974); R.B. Martin and W.C. Hutton, *J. Amer. Chem. Soc.*, 95, 4752, (1973).

Received: April 9, 1981
Accepted: April 30, 1981